Distributed Fault Detection and Identification for Interdependent Infrastructures

Marios M. Polycarpou

Professor, IEEE Fellow
President, IEEE Computational Intelligence Society
Director, KIOS Research Center for Intelligent Systems and Networks
Dept. Electrical and Computer Engineering
University of Cyprus

FACIES Project Workshop
Florence, Italy, 14th December 2013

Research work supported by:
Prevention, Preparedness and Consequence Management of Terrorism and Other Security-related Risks Programme – EC Directorate on General Home Affairs
We Live in a Distributed World!!

- Naturally, we live in a distributed world
- Networks, nodes, interdependencies, flows, interconnected systems, etc.
- Directly and indirectly interconnected systems
- Centralized vs. Distributed decision making
- Distributed decision making is natural in a distributed world
- Communication plays a key role in distributed decision making
- Balance between optimizing “local” objectives and “global” objectives
Distributed Decision and Control Applications

- Distributed Autonomous Vehicles
- Military and Security Applications
- Chemical and Petrochemical Engineering Processes
- Biomedical Engineering Applications
- Environmental Monitoring and Control Applications
- Critical Infrastructure Systems
Critical Infrastructure Systems

- Power systems
- Telecommunication networks
- Water systems (clean water and wastewater)
- Transportation systems

→ Interdependent systems that work together to provide the essential services of a modern society
Critical Infrastructure Systems (CIS) are crucial for everyday life and well-being

- Citizens expect/rely that CIS will *always* be available (24/7).
- Citizens expect that they will be managed *efficiently* (low cost).

Critical infrastructure systems do fail

- Natural disasters (earthquakes, flooding)
- Accidental failures (equipment failures, human error, software bugs)
- Malicious attacks (directly, remotely)

When critical infrastructures fail the consequences are tremendous

- Societal consequences
- Health hazards
- Economic effects
The problem of managing Critical Infrastructure Systems is expected to get more difficult

- CIS were not designed to be so large - they evolved due to growing demand
- Deregulation has resulted in more heterogeneous and distributed infrastructures, which make them more vulnerable to failures and attacks
- Renewables and environmental issues present new challenges
- There are more and more interdependencies between CIS
- Fewer people understand how these networks work and the interactions between all the components
- There are no reliable models that can predict their behavior under all the various scenarios
- Mega-cities: 18 in 2000, estimated 30 by 2020, 60 by 2050 → leading to the Smart Cities initiatives.
Motivation for Fault Diagnosis

• Technological advances in sensor/actuator networks, wireless communications and real-time software
• Sophisticated monitoring and control applications
• Huge data of different characteristics (in time and space) - moving to big data environments
• Advanced data processing and automated decision making

• However, data may be faulty, inconsistent or missing (nonsense data)
• Faulty data may result in wrong decisions or escalation to a failure
Faulty Scenarios in Uncertain Dynamical Systems

- Process Faults
- Actuator Faults
- Sensor Faults
- Communication Faults
- Controller Faults
- Malicious Attacks (cyber-security)
Motivation for Fault Diagnosis

→ **Need for intelligent data processing methods for:**
 - fault detection
 - fault isolation
 - fault identification and risk assessment
 - fault accommodation

→ **Need for cognitive fault diagnosis approaches to:**
 - learn characteristics or system dynamics
 - adapt to unforeseen scenarios
 - predict missing or inconsistent data
 - exploit spatial and temporal correlations between variables
 - prevent “small” fault events from escalating into a major failure
General Centralized Architecture

Control Algorithm

Fault Accommodation

Fault Monitoring And Diagnosis

Supervisory Algorithm

Controller

Plant

r → u → d → f → y
Distributed Fault Diagnosis Architecture
Distributed-Hierarchical Fault Diagnosis

RFD/RFI Agent

LFD/LFI Agent

LFD/LFI Agent

LFD/LFI Agent

KIOS Research Center for Intelligent Systems and Networks
University of Cyprus
Fault Diagnosis in Cyber-Physical Systems
Example: Water Distribution Networks

Objective: control the spatio-temporal distribution of drinking water disinfectant throughout the network by the injection of appropriate amount of disinfectant at suitably chosen actuator locations.
Problem Formulation

$$\dot{x}_i = \phi_i(x_i, u_i) + \eta_i(x_i, u_i, t) + \mathcal{B}(t - T_0) f_i(x_i, u_i) + \sum_{j \in \mathcal{J}} h_{ij}(x_j)$$

where:

- \(x \in \mathbb{R}^n\): state vector
- \(u \in \mathbb{R}^m\): input vector
- \(\phi : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n\): Nominal state dynamics
- \(\eta : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^+ \rightarrow \mathbb{R}^n\): Modeling uncertainty
- \(f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n\): Change in the system due to fault
- \(\mathcal{B}(t - T_0)\): Time profile of the fault
- \(h_{ij}(x_j)\): Interconnection dynamics
The modeling uncertainty η includes external disturbances as well as modeling errors.

$$|\eta_i(x, u, t)| \leq \bar{\eta}_i(x, u, t), \quad \forall (x, u) \in \bar{D}, \quad \forall t \geq 0,$$

where for each $i = 1, \ldots, n$, the bounding function $\bar{\eta}_i(x, u, t) > 0$ is known, integrable and bounded for all (x, u) in some compact region of interest $\bar{D} \supseteq D$.

The handling of the modeling uncertainty is a key design issue in fault diagnosis architectures:
- need to distinguish between faults and modeling uncertainty
- structured vs. unstructured modeling uncertainty
- trade-off between false alarms and conservative fault detection schemes
The term $\mathcal{B}(t - T_0) f(x, u)$ represents the deviations in the dynamics of the system due to a fault.

- $f(x, u)$ is the fault function
- The matrix $\mathcal{B}(t - T_0)$ characterizes the time profile of a fault which occurs at some unknown time T_0

$$\mathcal{B}(t - T_0) = \text{diag} \left[\beta_1(t - T_0), \ldots, \beta_n(t - T_0) \right]$$

$$\beta_i(t - T_0) = \begin{cases}
0 & \text{if } t < T_0 \\
1 & \text{if } t \geq T_0
\end{cases}$$

for abrupt

$$\beta_i(t - T_0) = \begin{cases}
0 & \text{if } t < T_0 \\
1 - e^{-\alpha_i(t - T_0)} & \text{if } t \geq T_0
\end{cases}$$

for incipient

where $\alpha_i > 0$ denotes the unknown fault evolution rate.
Fault Influence for Distributed Systems

- Local Faults
- Distributed Faults
- Propagating Faults
Fault Detection and Approximation Estimator

\[\dot{x}^0 = -\Lambda^0 (\tilde{x}^0 - x) + \phi(x, u) + \hat{f}(x, u, \hat{\theta}^0) \]

where:
- \(\tilde{x}^0 \in \mathbb{R}^n \): estimated state vector
- \(\hat{f} : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \mapsto \mathbb{R}^n \): Adaptive approximation model
- \(\hat{\theta}^0 \in \mathbb{R}^p \): adjustable weights of the on-line neural approximator
- \(\Lambda^0 = \text{diag}(\lambda_1^0, \cdots, \lambda_n^0) \): estimation poles

- The initial weight vector \(\hat{\theta}^0(0) \) is chosen such that
 \[\hat{f}(x, u, \hat{\theta}^0(0)) = 0, \quad \forall (x, u) \in \mathcal{D} \quad \text{(healthy situation)} \]
Adaptive Approximation Model

- Nonlinear approximation model with adjustable parameters (e.g., neural networks)
- Linearly parameterized vs. nonlinearly parameterized
- It provides the adaptive structure for approximating online:
 - Local modeling errors
 - Interconnection dynamics
 - Unknown fault functions
Learning Algorithm

\[\hat{\theta}^0 = \mathcal{P}_{\Theta^0} \left\{ \Gamma^0 Z^\top D[\epsilon^0] \right\} \]

where:

\[\epsilon^0 = x - \hat{x}^0 : \text{state estimation error} \]

The projection operator \(\mathcal{P}_{\Theta^0} \) restricts the parameter estimation vector to a predefined compact and convex region.

\[Z = \frac{\partial \tilde{f}(x, u, \hat{\theta}^0)}{\partial \hat{\theta}^0} : \text{regressor matrix} \]

\[\Gamma^0 = \Gamma^0 \top \in \mathbb{R}^{p \times p} : \text{Positive definite learning rate matrix} \]

\[D[\epsilon^0(t)] = \begin{cases} 0 & \text{if } |\epsilon^0_i(t)| \leq \tilde{\epsilon}^0_i(t), i = 1, \ldots, n \\ \epsilon^0(t) & \text{otherwise} \end{cases} \]

Dead-zone operator
Further Fault Diagnosis Topics

- Multiple Sensor Fault Detection and Isolation
- Fault Accommodation of Large-Scale Interconnected Nonlinear Systems
- Filtering Approach for Distributed fault Diagnosis
- Coordinated Communication for Distributed Fault Tolerant Control
- Security-Oriented Sensor Placement
- Applications in various domains
Performance Evaluation of Fault Diagnosis

- Robustness (false positives)
- Detectability Analysis (false negatives)
- Fault Detection Time
- Fault Isolability
- Stability Analysis
- Learning Characteristics
- Fault Accommodation Properties
Fault Diagnosis and Security

- Targeted faults
- Early detection is crucial
- Sensor placement is a key issue
- Need to consider the impact dynamics
Key Research Issues

- Development of suitable architectures
 - Distributed; Decentralized; Hierarchical
- Communication and cooperation between intelligent agents
 - How much communication is needed?
 - Event-based communication
- Development of hardware devices
 - Cost
 - Size
 - Reliability
 - Energy efficiency
- Development of algorithms for real-time information processing
- Intelligent decision support systems
Concluding Remarks

- Distributed fault diagnosis is a key area of growth
- Fault Diagnosis will play a key role in Big Data computing
- Distributed fault diagnosis of complex large-scale systems and cyber-physical systems
- Trend towards more sensors but cheaper sensors → more susceptible to faults
- Need for intelligent software to address faulty behavior of hardware